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" Sequential fusion strategy
" Gaussian mixture model
UPM
- Linear logistic regression optimising a cost objective function
UniS
- Logistic regression in score/quality space
" quality based clustering fixed rule fusion
" naive Bayes
JR
" Dempster-Shafer fusion
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- Mixture of factor analysers
JHUAPL
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Results of Cost-based

Evaluation
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Subsequent data sets
are created by
masking the scores
up to 10%, 20%,
30% and 40%

- )

—~
5 data sets are
used for testing
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Cost assignment strategy

If you use one score/quality measure, you are
charged a unit cost

If you use subsequent images from the same
device, you are charged 0.3 unit

A cost is charged for using a device to
acquire the sample, regardless of whether or
not the resulting match score/quality
measures will participate in the final fusion
process

All devices are charged the same way
~——"regardiess of the actual physicat unit cost
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Baseline Performance
35 ; ' ‘ ' The fingerprint

data always
contains

missing data

| /aue to failure to

1 process or to

match queries

0.5 0.6 0.7 0.8 0.9 1
cost

Note: If all the data in a channel is used, the
average cost per access is simply 1.
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Fusion Performance
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Results of Quality-based
Evaluation
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Face  Thumb Index  Middle

D o e

Fnf/xFa, Fol/xFtl, Fo2/xFt2, Fo3/xFt3

Template was Template was
acquired with a acquired with an
digital camera; optical sensor;

Scores |quality measures

query may be a query, may be an
digital or optical/thermal
webcam sensor (sliding)
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Same/Cross Device Matching

template query

Same device: ﬁ compare ﬁ (high quality)
Different device: ﬁ compare n (low quality)

The template is of high quality; the query may be
acquired with a high quality or low quality device
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Fusion Performance (HTER)
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In a cost-senstive evaluation, dynamic system selection strategy
appears promising
Threshold estimation is important

Handling missing information dynamically is a practical
requirement

A first attempt to estimate mismatched performance

Quality measures help
» Improved performance in general
» Dramatically improved resilience to missing data
Future work:
s Better quality measures
s Better reference algorithms
s Better fusion algorithms
s Morerigorous test (on a larger database)
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